2 00 5 A reductive group with finitely generated cohomology algebras .

نویسنده

  • Wilberd van der Kallen
چکیده

Let G be the linear algebraic group SL3 over a field k of characteristic two. Let A be a finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms. We show that the full cohomology ring H(G,A) is finitely generated. This extends the finite generation property of the ring of invariants AG. We discuss where the problem stands for other geometrically reductive group schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 4 Ju n 20 04 A reductive group with finitely generated cohomology algebras

Let G be the linear algebraic group SL3 over a field k of characteristic two. Let A be a finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms. We show that the full cohomology ring H(G,A) is finitely generated. This extends the finite generation property of the ring of invariants AG. We discuss where the problem stands for other geometrically reductive ...

متن کامل

4 A reductive group with finitely generated cohomology algebras .

Let G be the linear algebraic group SL3 over a field k of characteristic two. Let A be a finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms. We show that the full cohomology ring H(G,A) is finitely generated. This extends the finite generation property of the ring of invariants AG. We discuss where the problem stands for other geometrically reductive ...

متن کامل

A reductive group with finitely generated cohomology algebras

Let G be the linear algebraic group SL3 over a field k of characteristic two. Let A be a finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms. We show that the full cohomology ring H∗(G, A) is finitely generated. This extends the finite generation property of the ring of invariants AG. We discuss where the problem stands for other geometrically reductiv...

متن کامل

ar X iv : m at h / 07 03 13 1 v 1 [ m at h . A G ] 5 M ar 2 00 7 TOWARDS NON - REDUCTIVE GEOMETRIC INVARIANT THEORY

We study linear actions of algebraic groups on smooth projective varieties X. A guiding goal for us is to understand the cohomology of “quotients” under such actions, by generalizing (from reductive to non-reductive group actions) existing methods involving Mumford’s geometric invariant theory (GIT). We concentrate on actions of unipotent groups H, and define sets of stable points X and semista...

متن کامل

Bifunctor Cohomology and Cohomological Finite Generation for Reductive Groups

LetG be a reductive linear algebraic group over a field k. LetA be a finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms. Invariant theory states that the ring of invariantsA = H 0(G,A) is finitely generated. We show that in fact the full cohomology ringH ∗(G,A) is finitely generated. The proof is based on the strict polynomial bifunctor cohomology cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005